Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals
نویسندگان
چکیده
Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI) of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses) and epilithic (biofilms on unglazed ceramic tiles) communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.
منابع مشابه
Differences in Intertidal Microbial Assemblages on Urban Structures and Natural Rocky Reef
Global seascapes are increasingly modified to support high levels of human activity in the coastal zone. Modifications include the addition of defense structures and boating infrastructure, such as seawalls and marinas that replace natural habitats. Artificial structures support different macrofaunal communities to those found on natural rocky shores; however, little is known about differences ...
متن کاملModeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions
Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...
متن کاملDiscrimination of biofilm samples using pattern recognition techniques
Biofilms are complex aggregates formed by microorganisms such as bacteria, fungi and algae, which grow at the interfaces between water and natural or artificial materials. They are actively involved in processes of sorption and desorption of metal ions in water and reflect the environmental conditions in the recent past. Therefore, biofilms can be used as bioindicators of water quality. The goa...
متن کاملSystem with Slowly Flowing Seawater
Microbial biofilm development was followed under growth conditions similar to those of a projected salinity power plant. Microscope glass cover slips were piled in biofilm reactors to imitate the membrane stacks in such a plant. A staining technique closely correlating absorbance values with biofilm dry weight was used for the study. Generally, the biofilms consisted of solitary and filamentous...
متن کاملThe Influence of Substrate Heterogeneity on Biofilm Metabolism in a Stream Ecosystem
Simplification of natural habitats is a growing global concern demanding that ecologists better understand how habitat heterogeneity influences the structure and functioning of ecosystems. While there is extensive evidence that physical habitat heterogeneity affects the structure of biotic communities (i.e., organismal abundance, distribution, diversity, etc.), ecologists know little about how ...
متن کامل